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ABSTRACT

The Auslander conjecture claims that every affine crystallographic group
I is virtually solvable. We prove here this conjecture for the case when
the linear part of I" is contained in the orthogonal group O(n — 2,2).
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1. Introduction

Let Aff R” be the group of affine transformations of the real affine space R*. A
subgroup I' of Aff R" is called properly discontinuous if {y € I'; YK N K # 0}
is finite for every compact subset K of R"; and I is called crystallographic if
T is properly discontinuous and the orbit space '\R" is compact. A subgroup
I’ of Aff R* will also be called an affine group. A long-standing conjecture of
Auslander states that every affine crystallographic group I is virtually solvable.
So far, only special cases of this conjecture have been proved; see [FG], [GrM].
For the state of the results, see [A]. The main result of this announcement deals
with the following situation. Since Af R* = GL(n,R) x R" there is a natural
homomorphism ¢: Aff R* — GL(n,R), called the linear part. Let B be a non-
degenerate quadratic form on R" of signature (n — 2,2) and let O(B) be the
orthogonal group of the form B.

THEOREM 1.1: Let I’ be an affine crystallographic group with £(T') C O(B).
Then T is virtually solvable.

In the case under consideration this result settles the Auslander conjecture
completely. To put this result into perspective let us recall the following results.
Let T’ be an affine crystallographic group and suppose ¢(I'} C O(B) for a non-
degenerate quadratic form B of signature (p,q). Then I is virtually abelian
if B is positive definite, i.e., ¢ = 0. This is an old theorem of Bieberbach. T
is virtually solvable if ¢ = 1 [GK]. The content of Theorem 1.1 is that I is
virtually solvable if ¢ = 2. The methods of our proof are completely different
from the ones used for the case ¢ = 1. There are further results saying: there
exists a properly discontinuous group T such that ¢(T) is Zariski dense in O(B),
(p,q) = (n,n — 1), if n is even [AMS 3]. For every properly discontinuous
group I the group 4(T") is not Zariski dense in O(B) if |p — ¢| > 2 [AMS 2] or
(p,q) = (n,n—1) if n is odd [AMS 3]. Recently we have proved a much stronger
result than in [AMS 2]

THEOREM 1.2: Let I' be an affine group acting properly discontinuously on
an affine space V and let G be the Zariski closure of the linear part of I'.
Assume that the vector space V is a direct sum of G-invariant spaces V =
Vi®---® Vs, such that on each V; fori = 1,..., s there exists a quadratic form
B; which is invariant under G;, the restriction of G to V;, that the quadratic
forms B;,1 < i < s, are either positive definite or non-degenerate of signature
(i, qi), |pi — ai| = 2. Then either G is a compact group or there exists an
i, 1 <1 < s, such that the group O(B;) is non-compact and G, is a proper
subgroup of O(B;).
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2. Linear parts

Returning to the theorem of this announcement, i.e., to the case of signature
(n—2,2), we have to show that ¢(T") is virtually solvable, since the kernel of ¢ is
abelian, or equivalently that the Zariski closure of #(T") is virtually solvable. The
proof is done by contradiction, so we will assume from this point on that the
Zariski closure of £(I") is not solvable. We can also assume that it is connected.
We may assume furthermore that the dimension n of our affine space is minimal
among the counterexamples to our theorem. Let V be a vector space, B a
quadratic form on V, and O(B) the orthogonal group of the form B. We will
say that a connected simple subgroup H of O(B) is a standard subgroup if V is
a direct sum of H-invariant, B-orthogonal subspaces W and Ws such that the
natural homomorphism 7: H — O(By) is onto, where B is the restriction of
B to Wi, and h|w, = id for every h € H.

LEMMA 2.1: Assume that B is a quadratic form of signature (n — 2,2) and H
a connected simple subgroup of O(B) and rankgH = 2; then H is a standard
subgroup of O(B).

Proof: Let g be the Lie algebra of O(B). We will use the following matrix
realization of the Lie algebra g. Let J be the following matrix:

00 ... 01
00 ... 10
J=1: 0 Ly ©o
01 ... 00
10 ... 00

Then g={4 € M,(R), AJ = JA'} [OV]. There exists a maximal R- split torus
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T in O(B), whose Lie algebra t is the set t = {t € M,,(R),e; € R,e2 € R} where

en 0 ... 0 0
0 13} 0 0
t=1: 1 Opg :
0 0 —€&9 0
0 0 0 —€1

Therefore, all positive roots are the following: o =¢1, 3 =¢3, @+ 8 =1 + €9,
a—f = g1 —ey. The dimensions of the corresponding root spaces are as follows:
dimVy, =dimVs =n-2,dimV, s =dimV, g =1.

We can assume that T < H. Let Gg be the smallest connected simple sub-
group of O(B), containing . Then Gy < H. Let go be the Lie algebra of
Go. Then the simple algebra gy contains t and therefore all the following root
spaces Vo1,V (at8)> Va—p: V_(a—p). Let U be the sum Ut =V, + V3 and
U™ = V_q + V_g. Let b be the Lie algebra of H; then h N Ut # {0}. This
intersection is T invariant, therefore hNV, # {0} and hNVg # {0}. There exists
an element w; in the Weyl group of Go such that w;V,w; =1 = V. Therefore,
w1 (Vo Nh)wi ™" = Vg Nh. Let K be the centralizer of T, K = Zo(p)(T). This
group acts transitively on U% and U~. There exists an element w- in the Weyl
group of Gy such that waUTwz ™! = U~. Therefore, one can find a standard
subgroup H such that if b is the Lie algebra of H, then hn U+ = h N U+ and
hNU~ = hNU~. Thus, the sets of unipotent elements in H and H are the same
and hence H=H , since both of them are generated by their unipotent elements.
1

Remark 2.2: Actually, using the same idea, one can prove that if the signature
of a quadratic form B is (n — k, k) and H is a connected simple subgroup in
O(B) of real rank k, then H is standard.

LEMMA 2.3: Let G be the Zariski closure of ¢(I'). Then G is a reductive group.

Proof: Let U be the unipotent radical of G and let .S be a semisimple part of G.
If all simple connected subgroups of S have real rank at most 1, then (see [A]) I’
is virtually solvable. Therefore, there is one connected simple normal subgroup
S, of S with real rank 2. From the previous lemma it follows that there are two
S-invariant B-orthogonal subspaces Wi and Wa, such that S|w, = O(B|w,),
and the restriction B|w, is a positive definite quadratic form. Let Vp = {v €
Vl]tv = v for all t € U}. This subspace is G-invariant and it is easy to see that
either Vo C W5, which is impossible, or V5 = V. Thus U = {1}. |
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Let us summarize:

LEMMA 2.4: Let G be the Zariski closure of £(I'). Then there are two non-zero
G-invariant B-orthogonal vector subspaces W1 and W5 in R"™ such that
(1) Wy o Wy = R",
(2) the restriction B|w, of the form By to W has signature (m — 2,2), where
m = dimW; and G|w, = O(B1),
(3) the restriction B|W, is positive definite,
(4) G is the natural direct product of O(B;) and a compact group K.

Let B be a quadratic form on R™ of signature (p,q),q <p, p+ ¢ = n and
Hp = SO(B). Let us first recall the following definitions from [AMS 1]. Assume
that g is a semisimple element of Hg. Then the space R" can be decomposed into
a direct sum of three subspaces A (g), A= (g), A°(g) determined by the condition
that all eigenvalues of the restriction g | A*(g) (resp. g | A7 (9), g | A°(g)) are of
modulus more than 1 (resp. less than 1, equal to 1). An element g of Hp is called
hyperbolic if dim A%°(g) = p — ¢. Let B, be the restriction of the quadratic
form B to A%(g). Then for every hyperbolic element g of Hp the form B, is
positive definite. Let 7, be the natural projection 7,: R* — A°(g) parallel
to the subspace A™(g) & A= (g). Put D*(g) = At(g9) ® A°(g) and D~ (g) =
A~ (g) ® A°(g); then obviously D*(g) N D~(g) = A%(g). Let g be a hyperbolic
element and let s*(g) = max{|A\|, A, an eigenvalue of g of modulus < 1}. Let
s7(g9) = st(¢7') and s(g) = max{s*(g),s(g9)}. We will fix the standard
scalar product on R* and denote by | .| and d the corresponding norm and
metric on R”. This metric induces in the standard way a metric d on the
projective space PR®. A hyperbolic element g € Hp is called e-hyperbolic if
c/l\(AJr (9), A~ (g)) > &. Two hyperbolic elements g and h are called e-transversal
if

—~

d(A*(9),A"(R) 2 ¢ and d(A™(9), AT(h) > €.

Put o(g) = g | A%(g). Let g and h be e-hyperbolic, e-transversal elements
in Hg. We will now define an isometry p: A°(h) — A%(g) as follows. Let
Ao(g,h) = D)(g) N D*(h). Then we have two projections: A°(h) —» Ao(g, h),
which is a projection parallel to AT (h), and A¢(g,h) — A%(g), which is a
projection parallel to A=(g). Then we define p as their composition. Let
90,91, --,9n be e-hyperbolic pairwise e-transversal elements in Hg. Then, as
above, for every pair (g;, 9i+1) we have an isometry p;1: A%(giy1) — A%(g;).
Put m; = p1---p;. Then 6(g;) = mo(g;)m;~! is an orthogonal transforma-
tion of A%°ho). Let € = (€o,4y,...,0n_1) € N, ¢t = géogf1~-~gfl"_‘ll and
0r = 3(90)“6(g1)" -+ - 6(gn-1)""". Clearly 6(g:)" = 6(g%).
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An important role in our proof of the next lemma is played by the main result
of the recent paper [PR] by G. Prasad and A. S. Rapinchuk.

LEMMA 2.5: Let I be a Zariski dense subgroup in Hg and g and h be hyperbolic
transversal elements of I'. Put g9 = g. There exist a positive real number ¢ and
elements g; € T, fori = 1,...,n — 1, such that with g, = h:

(1) go,91,---.,9, are e-hyperbolic, pairwise e-transversal elements.

(2) Theset {os}¢enn Is dense in the connected component of the group O(By,).

Proof: The group T is a Zariski dense subgroup of O(B) and, according to
[AMS 3], for every n there are hyperbolic elements g;,¢ = 1,...,n — 1, such
that go, g1, ..., gn are e-hyperbolic, pairwise e-transversal elements, for suitable
¢. Let us now explain how to show that (2) is true.

It is enough to show that for every hyperbolic element g there exist hyperbolic,
pairwise transversal elements g1, .. ., g, such that the closure of the set {o;}senn
contains a Zariski open subset. Assume that we have chosen elements g¢;,¢ =
1,...,n — 1 such that the closure O of the set {0s}¢en~ has maximal possible
dimension. The set O is constructible and therefore there exist Zariski closed
subsets K, and Zariski open subsets U; of O(Bg,), 1 <4 < m such that O =
UL, (K;NU;). Assume that for every i, 7 = 1,...,m, K; is a proper subset of
O(Bho)' Let

S1 = {v}y € T, v is hyperbolic and R-irreducible element}.
This set is nonempty and open in I' (see [PR]). Let
S = {y|y € I',v and g, are transversal}.

This set is also open and nonempty. Therefore, the same is true for S = 51N .Ss.
Let v € S and let p: A°(y) — A%(gn—_1) be the projection we defined above.
Put mp41 = 7,p. Let us now take an element ¢ from Hp and consider the
element y(t) = ty¢~!. Define T, to be the set of all regular elements t € Hp
such that A*(y) = A*(t), A=(y) = A= (t) and therefore A°(y) = A°(t). It is
easy to see that the set

Ty = {o(t)o(y)"o(t ")n € N,t € T,,}

is dense in O(B,), because 7 is R-irreducible. Therefore, the set

T = {t € Hp|{6(7(t))"}nen € K where K = 6 K;}

i=1
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is open and nonempty. Let t € TN S. Let us take an element g, = ¢yt~ 1. If we
add g, to the chosen set g;, ¢ = 1,...,n — 1 we increase the dimension of the
set {0¢}oenn+1, which is impossible. Therefore, K; = O(By,) for some i. Then
the closure of the set {og}sen» contains Zariski open subsets. ]

Let O(B) be the following set:

9(B) = {(W, g); W a maximal B-anisotropic subspace of R",
By the restriction of B on W, and g € O(Bw )}.

We will say a sequence { X, nen, Xn = (Wi, gn) € O(B), converges to X =
(W,g9),X € O(B), if
(1) d(W,,,W) — 0 when n — oo;
(2) for every € > 0 there exists N = N(e) such that for every pair (a,b) of
vectors with a € W, | a¢| =1, and b € W,,,| b| =1, we have

la—bl —c<|gla)—gn(b)| <la—b] +e, foralln>N.

We will then write X,, = X.
For any hyperbolic element g of O(B), put X, = (4%g),0(g)) € O(B). Let
O(T) = {X4lg € T, g hyperbolic} and D°(T") = {X,|g € T, g e-hyperbolic}.

LEMMA 2.6: Let T be a Zariski dense subgroup in O(B) and let O(T) be the
closure of O(T" ) in O(B) and O¢(T) be the closure of O¢(T') in O(B).
(1) If (W, g) € OT") and W = A°(y) for some hyperbolic element € T, then
(W,g) € D( ) for every g € O(By).
(2) If (W,g) € D(T), then (W, g) € O¢(T) for every g € O(Bw).

3. Affine groups and sketch of the proof

Let Ap be the subgroup of the affine group Aff R"® consisting of those elements
g whose linear part belongs to Hg. Recall that Hg = SO(B), where B is a
non-degenerate quadratic form and O(B) is an orthogonal group of the form
B. We will call g € Ap hyperbolic if the linear part I(g) is hyperbolic. Let us
remember that for a linear hyperbolic transformation I(g), we have defined three
vector spaces AT (I(g)), A~ (l(g)), A°(I(g)) determined by the condition that all
eigenvalues of the restriction g | A*(I(g)) (resp. g | A~ (I(g)), g | A°(I(g))) are of
modulus more than 1 (resp. less than 1, equal to 1). For an element g € A we
will still write A (g) (47 (g), A°(g)) instead of AT(I(g)) (A~ (I(g)), A°(I(g))).
Let now g be a hyperbolic element of Ap for which there exists a unique g-
invariant line Ly. That will be the case if, for example, g is a hyperbolic element
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of T and T acts properly discontinuous on R™®. In this case the restriction of
g to Lg is a parallel translation by a vector ¢,. Note that t, € A%(g), so
By(tytg) > 0. Let v0(g) = t4/By(ty ty), and By(v°(g),2°(g)) = 1, 50

B(gz — z,v°(9)) = t,

for any point £ € R”. Let us now define the following affine subspaces: E_j =
DY(g)+ Ly, E; =D (9) + L, and Cy = E}f N E~,. 1t is clear that L, C Cy.

We will also use the notation 7, for the natural projection 7,: R* — C
parallel to A (g) ® A~ (g).

LEMMA 3.1: Let go, hi,...,hn be e-hyperbolic, pairwise e-transversal ele-
ments. Let H be the group generated by hy, . .., hy, and let g, = goh. We will fix
a point ¢ € R™ and put ¢y, = d(q,C,,). Let s = max{s(go), s(h1),...,s(hm)}.
Then there exist €, a = a(e), ¢ = ¢(e) such that for s < a

(1) gy is e/2-regular for all h € H,

(2) ¢4, <cforallhe H.

Let 9,(B) be the set of all (X,v) where X = (W,g) € O(B), v € W and
B(v,v) = 1. The set D,(B) contains information about the affine transforma-
tion g, not only about its linear part ¢(g), therefore we add the index a to O(B).
We will say that the sequence {(X,,vn)}nen, (Xn,vn) € Dq(B) converges to
(X,v) € D,(B) if X, =3 X and v, — v. Let

D5(T) = {(X,v) € Du(B); X € D°(T"),v € W, B(v,v) = 1}.

The following results play a central role in our proof. We will prove it under
the following assumptions about an affine group I'.
(I) B is a non-degenerate quadratic form of signature (p, q), where p > ¢, and
one of the following two conditions holds: p—¢ > 2 or ¢ < 2.
(IT1) £(T) is Zariski dense in O(B).
(IIT) Every hyperbolic element v € I" has no fixed point.
Note that we do not assume that T' is properly discontinuous.

PROPOSITION 3.2: Let I' be a subgroup of Aff R* with the properties (I)-(I1I)
above. Then there exist elements X1,..., X, Y1,...,Y,, with the following
properties:

(1) X; € D5, (D) fori=1,...,mand Y; € O5,(T) fori = 1,...,m.

(2) Foralli=1,...,m we have X; = (W, g;,v;) and Y; = (W, h;, —v;).

(3) {v1,va,-..,vm} forms a basis of W.

Based on Proposition 3.2 we prove
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PROPOSITION 3.3: Let I' be a subgroup of AfR" with the properties (I)-
(IIT) above. Then there is an € > 0, a set of e-regular, e-transversal elements
Y1,..-,7s in T, a compact subset K of R" and constants Cy = Co(g), Ci =
Ci(e), r=7r(e) > 1 and ¢ = q(e) < 1 such that:

1

(1) m1,...,7s are free generators of a free group I'* = (y1,...,7s).

(2) If v is an e-regular element in T such that {y,v,...,7s} are pairwise
e-transversal elements and r(y) > r, then y,11,...,7s are free generators

of a free group L.

(3) Ify is as in (2) and d,’?(K) > Cp and r(y) > r, then there are a number
t € {1,...,s} and a positive integer m < d2(K)-C such that forj = v*-y
we have d2(K) < ¢ -dP(K).

Let us explain the connection between these two important propositions. As-
sume that there exist hyperbolic, pairwise transversal elements g;,...,¢m in
T and hq,...,h, in T such that if X; = (A%g:),0(g:)), vi = v(g), Vi =
(A°(h;),0(hy)), v; = v°(h;) satisfy conditions (1)—(3) of Proposition 3.2. Then
using Lemma 3.1 one can see that such elements satisfy Proposition 3.3. By
Proposition 3.2, we can find such elements X;,..., X, Y1,...,Y; in the closure
of D5(I"). The content of Proposition 3.3 is to show that if we take elements
from ' quite close to the elements Xi,...,Xs, Y1,...,Ys, then they will also
satisfy Proposition 3.3.

From these propositions follows

COROLLARY 3.4: With notations and assumptions as in the proposition, let w
be the word length on T* = (v;,...,vs). Then there is a constant C = C(g)
and an element v* € I'* such that w(y*) < (df(K) -C)? and dfw(K) < Co.

The idea of the proof of Theorem 1 is as follows. We decompose every v € T’
into two components, along W; and along W,. The proposition shows that
for the Wi-component there is a coming-back effect. The corollary shows fur-
thermore that one has control over the word length of the elements involved.
It follows that exponentially many elements have the property that their Wi-
component returns near the starting point. Considering their Ws-component,
one plays this exponential growth of the number of elements against the polyno-
mial growth of the volume to see that there are infinitely many elements whose
Wa-component returns close to the starting point. Since one has control over
the Eg—spaces, we conclude a contradiction to proper discontinuity.

We will now explain the main lines of the proof in more detail. Assume I’
is not virtually solvable. Then the Zariski closure G of ¢(I') is semisimple, and
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there is a decomposition R* = W; ® W, where W,, i = 1,2, are G-invariant,
W1 is an irreducible G-vector space, B; = B|W; has signature (n; — 2,2) and
By = B|W, is positive definite. We have a projection m; of the affine space R™ to
the affine space A; = R /W, along W5, and hence an induced homomorphism
m: I' — Aff A; and similarly for o: R* — Ay := R"/W;. As a first step we
show that the representation of G on W has property (x) and m;(I") is Zariski
dense in O(B;). We can thus apply Proposition 3.3 to the group I't = m(T)
in the following way. We find elements ;,...,7, in I' such that the elements
m1(71),...,m(ys) are as in Proposition 3.3. As in [AMS 1, AMS 3] we can then
choose two elements 4; and 42 in I' both regular and such that the elements
m1 (%), m(y;), ¢ = 1,2, j = 1,...,s are pairwise transversal. Let &; < ¢ be
chosen so that these elements are ¢;-regular and pairwise £;-transversal. Then
there is a natural number N such that for every v € (71", 42" ) we have

(a) m1(7) is €1 /2-regular and r(m1 (7)) > r(e1/2),

(b) {m(y),m1 (%)% =1,...,s} are pairwise €; /2-transversal.
By changing notation we will assume that N = 1 and put ¢ = /2. Let w be
the word metric on T = (7,--+y¥s» 71, Y2) corresponding to these generators.
It is easy to check that for any two compact subsets K; C A; and Ky C Ay we
have

(1) dgy iy (1) < w(),

(2) d2,(K2) < w(y).
Now let S(M) = {7y € (%1,%2); w(y) < M}. Then |S(M)| > 3™ — 1. For every
v € S(M) there is an element v* € I'* such that

w(y*) < (d), (K1) -C)* and a2 . (K1) < Co,

71 (Y T3 (7*)

by Lemma 3.1 It is not difficult to see that w(y*vy) <« M?. Therefore, if we put
T(M)={ve€ f;df:m(Kl) < Cp and w(y) < Cs - M?} for an appropriately
chosen constant C3, we have
3) IT(M)] > 3" - 1.

For p € A and v € T(M) we can conclude from (1) and (2) that vyp is in the
ball of radius C3M? around p. The volume of this ball is « M?%dim 42 whereas
|T(M)| grows exponentially with M. Hence for every 6 > 0 the number of
elements of P(M) = {(v1,72) € T(M) x T(M), Ba(may1(p) — m272(p)) < &}
goes to infinity when |M| goes to infinity. Since, for an appropriately chosen
point p € R*, the Euclidean distance d(y(p),p) is bounded for v = 7175 1 and
(11,72) € P(M), it follows that I' does not act properly discontinuously. This
proves the theorem.
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