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ABSTRACT 

T h e  A u s l a n d e r  conjecture  c la ims t ha t  every affine crys ta l lographic  group 

F is v i r tua l ly  solvable. W'e prove here th is  conjec ture  for the  case when  

the  l inear par t  of  F is conta ined  in the  or thogonal  group O(n - 2, 2). 
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1. I n t r o d u c t i o n  

Let Aft ~"  be the group of affine transformations of the real affine space Ha. A 

subgroup F of Aft ~n is called properly discontinuous if {7 E F; 7 K  N K ~ 0} 

is finite for every compact subset K of Ilia; and F is called crystallographic if 

F is properly discontinuous and the orbit space F \ ~  n is compact. A subgroup 

F of Aft 1~ n will also be called an affine group. A long-standing conjecture of 

Auslander states that  every affine crystallographic group F is virtually solvable. 

So far, only special cases of this conjecture have been proved; see [FG], [GrM]. 

For the state of the results, see [A]. The main result of this announcement deals 

with the following situation. Since Aft ll~ n = GL(n,  ]~) ~< ~n there is a natural  

homomorphism ~: Aft I~ n ~ GL(n,  II~), called the linear part. Let B be a non- 

degenerate quadratic form on II~ n of signature (n - 2, 2) and let O(B)  be the 

orthogonal group of the form B. 

THEOREM 1.1: Let F be an atone crystallographic group with f(F) C O(B).  

Then F is virtually solvable. 

In the case under consideration this result settles the Auslander conjecture 

completely. To put this result into perspective let us recall the following results. 

Let F be an affine crystallographic group and suppose e(F) C O(B)  for a non- 

degenerate quadratic form B of signature (p, q). Then F is virtually abelian 

if B is positive definite, i.e., q = 0. This is an old theorem of Bieberbach. F 

is virtually solvable if q = 1 [GK]. The content of Theorem 1.1 is that  F is 

virtually solvable if q = 2. The methods of our proof are completely different 

from the ones used for the case q = 1. There are further results saying: there 

exists a properly discontinuous group F such that  f(F) is Zariski dense in O(B),  

(p, q) = (n ,n  - 1), if n is even [AMS 3]. For every properly discontinuous 

group F the group e(F) is not Zariski dense in O(B) if [p - ql -> 2 [AMS 2] or 

(p, q) = (n, n - 1) if n is odd JAMS 3]. Recently we have proved a much stronger 

result than in [AMS 2] 

THEOREM 1.2: Let F be an affine group acting properly discontinuously on 

an arlene space V and let G be the Zariski closure of  the linear part of F. 

Assume that the vector space V is a direct sum of G-invariant spaces V = 

V1 G . . . �9 Vs, such that on each Vi for i = 1 , . . . ,  s there exists a quadratic form 

Bi which is invariant under G~, the restriction of G to V~, that the quadratic 

forms Bi, 1 ~ i ~ s, are either positive definite or non-degenerate of signature 

(P~,qi), IPi - qil >_ 2. Then either G is a compact group or there exists an 

i, 1 ~_ i <_ s, such that the group O(Bi)  is non-compact and G~ is a proper 

subgroup of  O(B~). 
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2. L i n e a r  p a r t s  

Returning to the theorem of this announcement, i.e., to the case of signature 

(n - 2, 2), we have to show that  e(F) is virtually solvable, since the kernel of ~ is 

abelian, or equivalently that  the Zariski closure of f(F) is virtually solvable. The 

proof is done by contradiction, so we will assume from this point on that  the 

Zariski closure of ~(F) is not solvable. We can also assume that  it is connected. 

We may assume furthermore that  the dimension n of our affine space is minimal 

among the counterexamples to our theorem. Let V be a vector space, B a 

quadratic form on V, and O(B) the orthogonal group of the form B. We will 

say that  a connected simple subgroup H of O(B) is a standard subgroup if V is 

a direct sum of H-invariant, B-orthogonal subspaces W1 and W2 such that  the 

natural homomorphism 7r: H ~ O(B1) is onto, where B1 is the restriction of 

B to W1, and h[w2 = id for every h E H. 

LEMMA 2.1: Assume that B is a quadratic form of signature (n - 2, 2) and H 

a connected simple subgroup of O(B) and rank•H = 2; then H is a standard 

subgroup of O(B).  

Proof: Let g be the Lie algebra of O(B).  We will use the following matrix 

realization of the Lie algebra 1~. Let J be the following matrix: 

- = 
0 . . .  1 

/n--4 
1 . . .  0 

0 . . .  0 

Then g={A E M~(I~), A J  = JAt  } [OV]. There exists a maximal N- split torus 
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T in O(B) ,  whose Lie algebra t is the set t = {t E Mn(]~), cl E R, ~2 C R) where 

el 0 . . .  0 0 \ 
0 e2 . . .  0 0 

J t = " " 0n--4 

0 0 . . .  - c2  0 
0 0 . . .  0 - c l  

Therefore, all positive roots are the following: a = cl,  3 = r a +/~ = c I -~- g2, 

a - /~  = ~1 - ~2. The dimensions of the corresponding root spaces are as follows: 

dim Va = dim VZ = n - 2, dim Va+z = dim Va-~ = 1. 

We can assume that  T < H.  Let Go be the smallest connected simple sub- 

group of O(B),  containing T. Then Go < H.  Let go be the Lie algebra of 

Go. Then the simple algebra go contains t and therefore all the following root 

spaces Va+Z, V-(a+~), Va-~, V-(a_Z). Let U + be the sum U + = Va + VZ and 

U -  = V _ ~ + V - z .  Let h be the Lie algebra of H;  then b N U  + # {0}. This 

intersection is T invariant, therefore ~NV~ # {0} and 0NV~ # {0}. There exists 

an element Wl in the Weyl group of Go such that  wlVaW1-1 = V z. Therefore, 

Wl (Van 0)Wl-1 = VZ N 0. Let K be the centralizer of T, K = ZO(B) (T). This 

group acts transitively on U + and U - .  There exists an element w2 in the Weyl 

group of Go such that  w2U+w2 -1 = U - .  Therefore, one can find a standard 

subgroup H such that  if b is the Lie algebra of H,  then 0 N U + = [) N U + and 

n U -  = I)n U - .  Thus, the sets of unipotent elements in H and H are the same 

and hence H = H ,  since both of them are generated by their unipotent elements. 
| 

Remark  2.2: Actually, using the same idea, one can prove that  if the signature 

of a quadratic form B is (n - k, k) and H is a connected simple subgroup in 

O(B)  of real rank k, then H is standard. 

LEMMA 2.3: Let G be the Zariski closure of t (F) .  Then G is a reductive group. 

Proof: Let U be the unipotent radical of G and let S be a semisimple part  of G. 

If all simple connected subgroups of S have real rank at most 1, then (see [A]) F 

is virtually solvable. Therefore, there is one connected simple normal subgroup 

$1 of S with real rank 2. From the previous lemma it follows that  there are two 

S-invariant B-orthogonal subspaces W1 and W2, such that  sIwl - -  O(Blw1), 
and the restriction B I w  2 is a positive definite quadratic form. Let V0 = {v E 

Vltv  = v for all t E U}. This subspace is G-invariant and it is easy to see that  

either Vo C_ W2, which is impossible, or V0 = V. Thus U = {1}. 1 
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Let us summarize: 

LEMMA 2.4: Let G be the Zariski closure ofe(F).  Then there are two non-zero 

G-invariant B-orthogonal vector subspaces W1 and W~ in •n such that 

(1) Wl e W2 = 

(2) the restriction B[wl of  the form B1 to Wx has signature (m - 2, 2), where 

m = d imWl  and GIw1 - -  O ( B 1 ) ,  

(3) the restriction B[W2 is positive definite, 

(4) G is the natural direct product of O(B1) and a compact group K.  

Let B be a quadratic form on ~n of signature (p,q),q < p, p + q = n and 

Ha = SO(B) .  Let us first recall the following definitions from JAMS 1]. Assume 

that  g is a semisimple element of Ha.  Then the space ~n can be decomposed into 

a direct sum of three subspaces A + (g), A-  (g), A ~ (g) determined by the condition 

that  all eigenvalues of the restriction g [ A+ (g) (resp. g [ A-(g) ,  g [ A ~ (g)) are of 

modulus more than 1 (resp. less than 1, equal to 1). An element g of l iB is called 

h y p e r b o l i c  if dimA~ = p -  q. Let Bg be the restriction of the quadratic 

form B to A~ Then for every hyperbolic element g of HB the form Bg is 

positive definite. Let Irg be the natural projection ~r~: I~ n --+ A~ parallel 

to the subspace A +(g) @ A-(g) .  Pu t  D +(g) = A +(g) @ A ~ and D - ( g )  = 

A - ( g )  | A~ then obviously D+(g) N D - ( g )  = A~ Let g be a hyperbolic 

element and let s+(g) = max{lAg[, Ag an eigenvalue of g of modulus < 1}. Let 

s - (g )  = s+(g -1) and s(g) = max{s+(g) , s - (g ) } .  We will fix the standard 

scalar product  on l~ n and denote by [ . [ and d the corresponding norm and 

metric on ] ~ .  This metric induces in the standard way a metric d" on the 

projective space ?l~ n. A hyperbolic element g E HB is called c - h y p e r b o l i c  if 

d(A + (g), A -  (g)) ~ e. Two hyperbolic elements g and h are called e - t r a n s v e r s a l  

if 

d ( A + ( g ) , A - ( h ) )  >_ e and d ( A - ( g ) , A + ( h ) )  >_ e. 

Put  o(g) = g [ A~ Let g and h be e-hyperbolic, e-transversal elements 

in Ha.  We will now define an isometry p: A~ ) A~ as follows. Let 

Ao(g, h) = D)(g) A D+(h).  Then we have two projections: A~ ) Ao(g, h), 

which is a projection parallel to A+(h), and Ao(g, h) ) A~ which is a 

projection parallel to A-(g ) .  Then we define p as their composition. Let 

go ,g l , . . . , gn  be s-hyperbolic pairwise e-transversal elements in Ha.  Then, as 

above, for every pair (gi,gi+l) we have an isometry Pi+I: A~ ) A~ 

Put  wi -- p l ' " p i .  Then 5(gi) = 7~io(gi)~ri -1 is an orthogonal transforma- 

tion of A~ Let e = (~0,~l , . . . ,~n-1)  E N n, g~ = ~0~e~ ""gn-l~'~-~ and 
^ to ^ t l  ^ ~ n - 1  ^ ~i o(go) o(g ) ^ . . . .  o(g~-l)  . Clearly o(g ) = o(g  ). 
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An important  role in our proof of the next lemma is played by the main result 

of the recent paper  [PR] by G. Prasad and A. S. Rapinchuk. 

LEMMA 2.5: Let F be a Zariski dense subgroup in HB and g and h be hyperbolic 

transversal elements ofF.  Put  go = g. There exist a positive r e a / n u m b e r  c and 

elements gi E F, fori  = 1 , . . . , n -  1, such that with g~ = h: 

(1) go, gl . . . .  , gn are c-hyperbolic, pairwise c-transversal elements. 

(2) The set {o~}eeN~ is dense in the connected component of the group O( Bg o ). 

Proof: The group F is a Zariski dense subgroup of O(B) and, according to 

[AMS 3], for every n there are hyperbolic elements gi , i  = 1 , . . . , n  - 1, such 

that  go, g l , . . . ,  gn are c-hyperbolic, pairwise c-transversal elements, for suitable 

c. Let us now explain how to show that  (2) is true. 

I t  is enough to show that  for every hyperbolic element g there exist hyperbolic, 

pairwise transversal elements g l , . . . ,  g ,  such that  the closure of the set {o~}ecN .... 

contains a Zariski open subset. Assume that  we have chosen elements gi, i = 

1 , . . . ,  n - 1 such that  the closure O of the set {oe}e~N- has maximal possible 

dimension. The set 0 is constructible and therefore there exist Zariski closed 

subsets h'~ and Zariski open subsets Ui of O(Bgo), 1 < i < m such that  O = 
m Ui=l (K~ A Ui). Assume that  for every i, i --- 1 , . . . ,  m, h'i is a proper subset of 

O(Bho). Let 

$1 = {717 E F, 7 is hyperbolic and R-irreducible element}. 

This set is nonempty and open in F (see [PR]). Let 

$2 = {7[7 E F, 7 and g~- i  are transversal}. 

This set is also open and nonempty. Therefore, the same is true for S = $1 MS2. 

Let 3' E S and let p: A~ - -+  A~ be the projection we defined above. 

Put  zrn+l = 7~nfl. Let us now take an element t from HB and consider the 

element 7(t) = tTt -1. Define Tv to be the set of all regular elements t E HB 

such that  A+(7) = A+(t), A - ( 7 )  = A- ( t )  and therefore A~ = A~ It  is 

easy to see that  the set 

T1 = {o(t)o(7)~o(t-1)in E N,t E T~} 

is dense in O(B.y), because 7 is ]~-irreducible. Therefore, the set 

m 

T = {t C HBl{5(v(t))n}n~N C K where K = U Ki} 
i = 1  



Vol. 148, 2005 THE AUSLANDER CONJECTURE 17 

is open and nonempty. Let t C T M S. Let us take an element gn = t~/t -1. If we 

add gn to the chosen set gi, i = 1 , . . . ,  n - 1 we increase the dimension of the 

set {oe}ecN~+l, which is impossible. Therefore, Ki = O(Bgo) for some i. Then 

the closure of the set {oe}eeNo contains Zariski open subsets. | 

Let D(B) be the following set: 

D(/3) = {(W, g); W a maximal B-anisotropic subspace of IR n , 

B w  the restriction of B on W, and g C O(Bw)} .  

We will say a sequence {X~}~cN, X~ = (Wn,g~) E 9(/3),  converges to X = 

(W ,9 ) ,X  E D(/3), if 

(1) d(W~, W) ---+ 0 when n ~ oc; 

(2) for every e > 0 there exists N = N(e)  such that  for every pair (a, b) of 

vectors with a C W, I a I = 1, and b C W~, I bl = 1, we have 

l a - b I - e < I g(a) - g,~(b)l < [ a - b I + e, for a l l n > N .  

We will then write Xn ~ X.  

For any hyperbolic element g of 0(/3), put X~ = (A~ o(g)) C D(/3). Let 

D(F) = {Xglg E F, g hyperbolic} and D~(F) = {Xglg E F, g e-hyperbolic}. 

LEIVIMA 2.6: Let F be a Zariski dense subgroup in O(B) and let D(F) be the 

closure o lD(F)  in 9(/3) and D~(F) be the closure of D~(P) in D(B).  

(1) I f  (W,g) E D(F) and W = A~ for some hyperbolic element 7 C F, then 
(W,g) ~ D(F) for every g E O(/3w). 

(2) I f (W,g )  ~ D~(r) ,  then (W,g) C D~(r )  for every g �9 O(/3w). 

3. Afflne groups  and sketch of  the  proof  

Let AB be the subgroup of the affine group Aft II~ n consisting of those elements 

g whose linear par t  belongs to HB. Recall that  HB = SO(B) ,  where B is a 

non-degenerate quadratic form and 0(/3)  is an orthogonal group of the form 

/3. We will call g E AB hyperbolic if the linear par t  l(g) is hyperbolic. Let us 

remember  that  for a linear hyperbolic t ransformation l(g), we have defined three 

vector spaces A + (1(9)), A-( l (g) ) ,  A~ determined by the condition that  all 

eigenvalues of the restriction g I A+ (l(g) ) (resp. g I A-( l (g)  ), g I A~ ) ) are of 

modulus more than 1 (resp. less than 1, equal to 1). For an element g CAB we 

will still write A+(g) (A-(g) ,  A~ instead of A+(l(g)) (A-(l(g)) ,  A~ 

Let now g be a hyperbolic element of AB for which there exists a unique g- 

invariant line L 9. Tha t  will be the case if, for example, g is a hyperbolic element 
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of F and F acts properly discontinuous on ]~n. In this case the restriction of 

g to Lg is a parallel translation by a vector tg. Note that  tg E A~ so 

By (tg, t9) > 0. Let v ~ (g) = tg/Bg (tg, t9), and B9 (v O(g), v 0 (g)) = 1, so 

B(gx  - x ,v~  = t9 

for any point x E R n. Let us now define the following affine subspaces: E + -- 

D+(g) + Lg, E [  = D - ( g )  + Lg and C 9 = E + N E - g .  It is clear that  Lg C C9. 

We will also use the notation zrg for the natural projection 7rg: l~ n ) Cg 

parallel to A + (g) G A-(9)-  

LEMMA 3.1: Let 9o, h l , . . . , h m  be e-hyperbolic, pairwise c-transversal ele- 

ments.  Let H be the group generated by ha , . . .  , hm and let 9h = 9oh. We will fix 

a point q �9 ]~  and put  cg h = d(q, Cgh). Let s = m a x { s ( g o ) , s ( h , ) , . . .  ,s(hm)}. 

Then there exist e, a = a(e), c = c(e) such that for s < a 

(1) 9h is e/2-regular for all h �9 H,  

(2) cob _< c for a11 h �9 H.  

Let Da(B)  be the set of all (X,v)  where X = (W,g)  �9 D(B) ,  v �9 W and 

B(v ,  v) = 1. The set Da(B)  contains information about the affine transforma- 

tion g, not only about its linear part  g(g), therefore we add the index a to O(B) .  

We will say that  the sequence {(X~,v~)}~eN, (Xn,  v~) �9 Oa(B)  converges to 

( X , v )  �9 D~(B)  i fX~  ~ X and vn --> v. Let 

D~(F) = {(X,v)  �9 9 ~ ( B ) ; X  �9 9~ (P) ,v  �9 W , B ( v , v )  = 1}. 

The following results play a central role in our proof. We will prove it under 

the following assumptions about an affine group F. 

(I) B is a non-degenerate quadratic form of signature (p, q), where p _> q, and 

one of the following two conditions holds: p - q _> 2 or q _< 2. 

(II) g(F) is Zariski dense in O(B) .  

(III) Every hyperbolic element 3' �9 F has no fixed point. 

Note that  we do not assume that  F is properly discontinuous. 

PROPOSITION 3.2: Let F be a subgroup of  Aft  ~'~ with the properties (I)-(III) 

above. Then there exist elements X1, . . . , X m  , Y1, . . . , Ym with the following 

properties: 

(1) Xi �9 9 ~ ( r )  f o r i  -- 1 , . . . , m  and Y / � 9  D~a(V) for i = 1 , . . . , m .  

(2)  F o r  a l l  = 1 , . . .  w e  h a v e  = ( W , 9 . v O  and = 

(3) {Vl ,V2 , . - .  ,Vm} forms a basis of W.  

Based on Proposition 3.2 we prove 
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PROPOSITION 3.3: Let F be a subgroup of Aff]l( n with the properties (I)-  

(III) above. Then there is an e > 0, a set of s-regular, e-transversal elements 

"Y1,...,Ts in F, a compact subset K of ~ n and constants Co = Co(e), C1 = 

Cl (e), r = r(e) > 1 and q = q(e) < 1 such that: 

(1) 71 , . . . ,  % are free generators of a free group F* = (71 . . . .  , %). 

(2) I f  7 is an e-regular element in F such that { 7 , 7 1 , . . . , % }  are pairwise 

e-transversal elements and r(7) >_ r, then 7, 71 , . . . ,  % are free generators 

of a free group F. 

(3) I f 7  is as in (2) and d~(K)  > Co and r(7 ) >_ r, then there are a number 

t C {1 . . . .  ,s}  andapos i t i ve in tegerm <_ dB(K).C1 such tha t for~  = 7 ~ ' 7  

we have d (K) < q. 

Let us explain the connection between these two important  propositions. As- 

sume that  there exist hyperbolic, pairwise transversal elements g l , - . - , g m  in 

F and h l , . . . , h m  in F such that  if Xi = (A~ vi = v~ Yi = 

(A~ vi = v~ satisfy conditions (1)-(3) of Proposition 3.2. Then 

using Lemma 3.1 one can see that  such elements satisfy Proposition 3.3. By 

Proposition 3.2, we can find such elements X 1 , . . . ,  Xs,  Y 1 , . . . ,  Ys in the closure 

of L~(F).  The content of Proposition 3.3 is to show that  if we take elements 

from F quite close to the elements X 1 , . . . ,  X~, Y1, . . . ,  ]Is, then they will also 

satisfy Proposition 3.3. 

From these propositions follows 

COROLLARY 3.4: With notations and assumptions as in the proposition, let w 

be the word length on F* = (7),1 . . . .  , %). Then there is a constant C = C(e) 

and an element 7* E F* such that w(7*) <_ (dBv(h') �9 C) 2 and dSv.~(t() <__ Co. 

The idea of the proof of Theorem 1 is as follows. We decompose every 7 E F 

into two components, along W1 and along W2. The proposition shows that  

for the Wl-component there is a coming-back effect. The corollary shows fur- 

thermore that  one has control over the word length of the elements involved. 

It follows that  exponentially many elements have the property that  their W1- 

component returns near the starting point. Considering their W2-component, 

one plays this exponential growth of the number of elements against the polyno- 

mial growth of the volume to see that  there are infinitely many elements whose 

W.2-component returns close to the starting point. Since one has control over 

the E~ we conclude a contradiction to proper discontinuity. 

We will now explain the main lines of the proof in more detail. Assume F 

is not virtually solvable. Then the Zariski closure G of g(F) is semisimple, and 
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there is a decomposition ~n = W1 G W2 where Wi, i = 1, 2, are G-invariant, 

W1 is an irreducible G-vector space, B1 = BIW1 has signature (nl - 2, 2) and 

B2 = BIW2 is positive definite. We have a projection 71"1 of the affine space ~n to 

the affine space A1 = ]~n/W2 along W2, and hence an induced homomorphism 

ul: F -+ AffA1 and similarly for ~2: ll~ n -+ A2 : =  ]~n/w1. As a first step we 

show that  the representation of G on W1 has property (*) and lrl (F) is Zariski 

dense in O(B1). We can thus apply Proposition 3.3 to the group F1 = 70(F) 

in the following way. We find elements 71 , . . . ,  7s in F such that  the elements 

71"1 ( 7 1 ) , ' . . ,  71"1 (Ts) are as in Proposition 3.3. As in [AMS 1, AMS 3] we can then 

choose two elements ~ and ~ in F both regular and such that  the elements 

71"1(~) , 71"1(7j), i = 1,2, j = 1 , . . . , S  are pairwise transversal. Let ffl < ~ be 

chosen so that  these elements are el-regular and pairwise cl-transversal. Then 

there is a natural number N such that  for every 7 E (~lN,~2 N) we have 

(a) Ir1(7) is el/2-regular and r(Trl(7)) > r(cl /2) ,  

(b) {7rl (7), 7r1(7/), i = 1 , . . . ,  s} are pairwise Cl/2-transversal. 

By changing notation we will assume that  N = 1 and put ~ = el /2.  Let w be 

the word metric on F = (71, . . . ,  7s, ~ ,  ~ )  corresponding to these generators. 

It is easy to check that  for any two compact subsets K1 C A1 and K2 C A2 we 

have 

(1) dB/(~)(/X'l) << w(7), 

(2) dB: . , (K2)  << w(7). 
Now let S(M) = {7 E ( ~ , % ) ;  w(7 ) _~ M}. Then IS(M)] > 3 M - 1. For every 

E S(M) there is an element ~* E F* such that  

w(7* ) < (dBI(.~)(K1) �9 C) 2 and d B~ _ ~ ( ~ . ~ ) ( K ~ )  _< Co, 

by Lemma 3.1 It is not difficult to see that  w(7"7) << M 2. Therefore, if we put 
T(M) = {7 E F;dBI~ (K1) < Co and w(7) < C3" M 2} for an appropriately ( )  - 

c h o s e n  constant C3, we have 

(3) IT(M)I >_ 3 M - 1. 
For p E A and 7 E T(M) we can conclude from (1) and (2) that  7P is in the 
ball of radius C3M 2 around p. The volume of this ball is << M 2'dimA2 whereas 

IT(M)] grows exponentially with M. Hence for every 5 > 0 the number of 

elements of P(M) = {(71,72) E T(M) • T(M),  B2(7~271(p) -7~eTe(P)) _< 5} 
goes to infni ty  when ]M I goes to infinity. Since, for an appropriately chosen 

point p E I~ ~, the Euclidean distance d(7(p),p) is bounded for 7 = 71721 and 

(71,72) E P(M), it follows that  F does not act properly discontinuously. This 

proves the theorem. 
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