THE AUSLANDER CONJECTURE FOR GROUPS LEAVING A FORM OF SIGNATURE $(n - 2, 2)$ INVARIANT

BY

H. ABELS

Fakult~it fiir Mathematik, Universit~it Biele/eld Postfach 100 131, 33501 Bielefeld, Germany e-maih abels@mathematik.uni-bielefeld.de

AND

G. A. MARGULIS

Deptartment of Mathematics, Yale University New Haven, CT 06520, USA e-maih margulis-gregory@math.yale.edu

AND

G. A. SOIFER

Deptartment of Mathematics, Bar-Ilan University 52900 Ramat-Gan, Israel e-maih soifer@macs.biu.ac.il

Dedicated to Hillel Furstenberg

ABSTRACT

The Auslander conjecture claims that every affine crystallographic group Γ is virtually solvable. We prove here this conjecture for the case when the linear part of Γ is contained in the orthogonal group $O(n-2, 2)$.

Received January 7, 2004

1. Introduction

Let Aff \mathbb{R}^n be the group of affine transformations of the real affine space \mathbb{R}^n . A subgroup Γ of Aff \mathbb{R}^n is called properly discontinuous if $\{\gamma \in \Gamma; \gamma K \cap K \neq \emptyset\}$ is finite for every compact subset K of \mathbb{R}^n ; and Γ is called crystallographic if Γ is properly discontinuous and the orbit space $\Gamma\backslash\mathbb{R}^n$ is compact. A subgroup Γ of Aff \mathbb{R}^n will also be called an affine group. A long-standing conjecture of Auslander states that every affine crystallographic group Γ is virtually solvable. So far, only special cases of this conjecture have been proved; see [FG], [GrM]. For the state of the results, see [A]. The main result of this announcement deals with the following situation. Since Aff $\mathbb{R}^n = GL(n, \mathbb{R}) \ltimes \mathbb{R}^n$ there is a natural homomorphism $\ell:$ Aff $\mathbb{R}^n \to GL(n,\mathbb{R})$, called the linear part. Let B be a nondegenerate quadratic form on \mathbb{R}^n of signature $(n - 2, 2)$ and let $O(B)$ be the orthogonal group of the form B.

THEOREM 1.1: Let Γ be an affine crystallographic group with $\ell(\Gamma) \subset O(B)$. *Then F is virtually solvable.*

In the case under consideration this result settles the Auslander conjecture completely. To put this result into perspective let us recall the following results. Let Γ be an affine crystallographic group and suppose $\ell(\Gamma) \subset O(B)$ for a nondegenerate quadratic form B of signature (p, q) . Then Γ is virtually abelian if B is positive definite, i.e., $q = 0$. This is an old theorem of Bieberbach. Γ is virtually solvable if $q = 1$ [GK]. The content of Theorem 1.1 is that Γ is virtually solvable if $q = 2$. The methods of our proof are completely different from the ones used for the case $q = 1$. There are further results saying: there exists a properly discontinuous group Γ such that $\ell(\Gamma)$ is Zariski dense in $O(B)$, $(p, q) = (n, n - 1)$, if n is even [AMS 3]. For every properly discontinuous group Γ the group $\ell(\Gamma)$ is not Zariski dense in $O(B)$ if $|p - q| \geq 2$ [AMS 2] or $(p, q) = (n, n-1)$ if n is odd [AMS 3]. Recently we have proved a much stronger result than in [AMS 2]

THEOREM 1.2: Let Γ be an affine group acting properly discontinuously on an affine space V and let G be the *Zariski closure of the linear part of* Γ . Assume that the vector space V is a direct sum of G-invariant spaces $V =$ $V_1 \oplus \cdots \oplus V_s$, such that on each V_i for $i = 1, \ldots, s$ there exists a quadratic form B_i which is invariant under G_i , the restriction of G to V_i , that the quadratic *forms* B_i *,* $1 \leq i \leq s$ *, are either positive definite or non-degenerate of signature* (p_i,q_i) , $|p_i - q_i| \geq 2$. Then either G is a compact group or there exists an $i, 1 \leq i \leq s$, such that the group $O(B_i)$ is non-compact and G_i is a proper subgroup of $O(B_i)$.

ACKNOWLEDGEMENT: The authors thank the following institutions for support: The Sonderforschungsbereich 343 Bielefeld and the Forschergruppe "Spectrale Analysis, asymptotische Verteilungen und stochastische Dynamik" Bielefeld both financed by the Deutsche Forschungsgemeinschaft, the German-Israeli Foundation for Research and Development under Grant No. G-454-213.06/95, the NSF Grant DMS-0244406, the Emmy Noether Research Institute for Mathematics, Bar-Ilan University, Center of Excellence ISF, grant N 8008/02-1. Our special thanks go to Gopal Prasad and Andrei Rapinchuk for providing the result [PR] which plays an essential role in our proof of Lemma 2.5.

2. Linear parts

Returning to the theorem of this announcement, i.e., to the case of signature $(n-2, 2)$, we have to show that $\ell(\Gamma)$ is virtually solvable, since the kernel of ℓ is abelian, or equivalently that the Zariski closure of $\ell(\Gamma)$ is virtually solvable. The proof is done by contradiction, so we will assume from this point on that the Zariski closure of $\ell(\Gamma)$ is not solvable. We can also assume that it is connected. We may assume furthermore that the dimension n of our affine space is minimal among the counterexamples to our theorem. Let V be a vector space, B a quadratic form on V , and $O(B)$ the orthogonal group of the form B . We will say that a connected simple subgroup H of $O(B)$ is a standard subgroup if V is a direct sum of H-invariant, B-orthogonal subspaces W_1 and W_2 such that the natural homomorphism $\pi: H \longrightarrow O(B_1)$ is onto, where B_1 is the restriction of B to W_1 , and $h|_{W_2} = id$ for every $h \in H$.

LEMMA 2.1: Assume that B is a quadratic form of signature $(n-2, 2)$ and H *a connected simple subgroup of* $O(B)$ *and rank* $H = 2$; then *H* is a standard *subgroup of O(B).*

Proof: Let g be the Lie algebra of *O(B).* We will use the following matrix realization of the Lie algebra \mathfrak{g} . Let J be the following matrix:

$$
J = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 1 & 0 \\ \vdots & \vdots & I_{n-4} & \vdots & \vdots \\ 0 & 1 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix}.
$$

Then $g = \{A \in M_n(\mathbb{R}), AJ = JA^t\}$ [OV]. There exists a maximal \mathbb{R} - split torus

T in $O(B)$, whose Lie algebra t is the set $t = \{t \in M_n(\mathbb{R}), \varepsilon_1 \in \mathbb{R}, \varepsilon_2 \in \mathbb{R}\}\)$ where

$$
t = \begin{pmatrix} \varepsilon_1 & 0 & \dots & 0 & 0 \\ 0 & \varepsilon_2 & \dots & 0 & 0 \\ \vdots & \vdots & 0_{n-4} & \vdots & \vdots \\ 0 & 0 & \dots & -\varepsilon_2 & 0 \\ 0 & 0 & \dots & 0 & -\varepsilon_1 \end{pmatrix}.
$$

Therefore, all positive roots are the following: $\alpha = \varepsilon_1, \beta = \varepsilon_2, \alpha + \beta = \varepsilon_1 + \varepsilon_2$, $\alpha - \beta = \varepsilon_1 - \varepsilon_2$. The dimensions of the corresponding root spaces are as follows: $\dim V_{\alpha} = \dim V_{\beta} = n - 2$, $\dim V_{\alpha+\beta} = \dim V_{\alpha-\beta} = 1$.

We can assume that $T \leq H$. Let G_0 be the smallest connected simple subgroup of $O(B)$, containing T. Then $G_0 \nleq H$. Let \mathfrak{g}_0 be the Lie algebra of G_0 . Then the simple algebra \mathfrak{g}_0 contains t and therefore all the following root spaces $V_{\alpha+\beta}$, $V_{-(\alpha+\beta)}$, $V_{\alpha-\beta}$, $V_{-(\alpha-\beta)}$. Let U^+ be the sum $U^+ = V_{\alpha} + V_{\beta}$ and $U^- = V_{-\alpha} + V_{-\beta}$. Let h be the Lie algebra of H; then $\mathfrak{h} \cap U^+ \neq \{0\}$. This intersection is T invariant, therefore $\mathfrak{h} \cap V_{\alpha} \neq \{0\}$ and $\mathfrak{h} \cap V_{\beta} \neq \{0\}$. There exists an element w_1 in the Weyl group of G_0 such that $w_1V_\alpha w_1^{-1} = V_\beta$. Therefore, $w_1 (V_\alpha \cap \mathfrak{h}) w_1^{-1} = V_\beta \cap \mathfrak{h}$. Let K be the centralizer of T, $K = Z_{O(B)}(T)$. This group acts transitively on U^+ and U^- . There exists an element w_2 in the Weyl group of G_0 such that $w_2U^+w_2^{-1}=U^-$. Therefore, one can find a standard subgroup \hat{H} such that if $\hat{\mathfrak{h}}$ is the Lie algebra of \hat{H} , then $\hat{\mathfrak{h}} \cap U^+ = \mathfrak{h} \cap U^+$ and $\hat{\mathfrak{h}} \cap U^- = \mathfrak{h} \cap U^-$. Thus, the sets of unipotent elements in H and \hat{H} are the same and hence $H=\hat{H}$, since both of them are generated by their unipotent elements. **|**

Remark 2.2: Actually, using the same idea, one can prove that if the signature of a quadratic form B is $(n - k, k)$ and H is a connected simple subgroup in $O(B)$ of real rank k, then H is standard.

LEMMA 2.3: Let G be the Zariski closure of $\ell(\Gamma)$. Then G is a reductive group.

Proof: Let U be the unipotent radical of G and let S be a semisimple part of G. If all simple connected subgroups of S have real rank at most 1, then (see [A]) Γ is virtually solvable. Therefore, there is one connected simple normal subgroup S_1 of S with real rank 2. From the previous lemma it follows that there are two S-invariant B-orthogonal subspaces W_1 and W_2 , such that $S|_{W_1} = O(B|_{W_1}),$ and the restriction $B|_{W_2}$ is a positive definite quadratic form. Let $V_0 = \{v \in$ $V|tv = v$ for all $t \in U$. This subspace is G-invariant and it is easy to see that either $V_0 \subseteq W_2$, which is impossible, or $V_0 = V$. Thus $U = \{1\}$.

Let us summarize:

LEMMA 2.4: Let G be the Zariski closure of $\ell(\Gamma)$. Then there are two non-zero *G*-invariant *B*-orthogonal vector subspaces W_1 and W_2 in \mathbb{R}^n such that

- (1) $W_1 \oplus W_2 = \mathbb{R}^n$,
- (2) the restriction $B|_{W_1}$ of the form B_1 to W_1 has signature $(m-2, 2)$, where $m = dimW_1$ and $G|_{W_1} = O(B_1)$,
- (3) the restriction $B|W_2$ is positive definite,
- (4) *G* is the natural direct product of $O(B_1)$ and a compact group K.

Let B be a quadratic form on \mathbb{R}^n of signature $(p,q), q \leq p, p + q = n$ and $H_B = SO(B)$. Let us first recall the following definitions from [AMS 1]. Assume that g is a semisimple element of H_B . Then the space \mathbb{R}^n can be decomposed into a direct sum of three subspaces $A^+(g)$, $A^-(g)$, $A^0(g)$ determined by the condition that all eigenvalues of the restriction $g | A^+(g)$ (resp. $g | A^-(g), g | A^0(g)$) are of modulus more than 1 (resp. less than 1, equal to 1). An element g of H_B is called hyperbolic if dim $A^{0}(g) = p - q$. Let B_{g} be the restriction of the quadratic form B to $A^{0}(g)$. Then for every hyperbolic element g of H_{B} the form B_{g} is positive definite. Let π_g be the natural projection $\pi_g: \mathbb{R}^n \longrightarrow A^0(g)$ parallel to the subspace $A^+(g) \oplus A^-(g)$. Put $D^+(g) = A^+(g) \oplus A^0(g)$ and $D^-(g) =$ $A^-(g) \oplus A^0(g)$; then obviously $D^+(g) \cap D^-(g) = A^0(g)$. Let g be a hyperbolic element and let $s^+(g) = \max{\{\vert \lambda_g \vert, \lambda_g\}}$ an eigenvalue of g of modulus $\langle 1 \rangle$. Let $s^{-}(g) = s^{+}(g^{-1})$ and $s(g) = \max\{s^{+}(g), s^{-}(g)\}\$. We will fix the standard scalar product on \mathbb{R}^n and denote by | .| and d the corresponding norm and metric on \mathbb{R}^n . This metric induces in the standard way a metric \hat{d} on the projective space \mathbb{PR}^n . A hyperbolic element $g \in H_B$ is called ε -hyperbolic if $\hat{d}(A^+(g), A^-(g)) \geq \varepsilon$. Two hyperbolic elements g and h are called ε -transversal if $\overline{}$

$$
\tilde{d}(A^+(g), A^-(h)) \geq \varepsilon \quad \text{and} \quad \tilde{d}(A^-(g), A^+(h)) \geq \varepsilon.
$$

Put $o(g) = g \mid A^0(g)$. Let g and h be ε -hyperbolic, ε -transversal elements in H_B . We will now define an isometry $\rho: A^0(h) \longrightarrow A^0(g)$ as follows. Let $A_0(g, h) = D^1(g) \cap D^+(h)$. Then we have two projections: $A^0(h) \longrightarrow A_0(g, h)$, which is a projection parallel to $A^+(h)$, and $A_0(g, h) \longrightarrow A^0(g)$, which is a projection parallel to $A^{-}(g)$. Then we define ρ as their composition. Let g_0, g_1, \ldots, g_n be ε -hyperbolic pairwise ε -transversal elements in H_B . Then, as above, for every pair (g_i, g_{i+1}) we have an isometry $\rho_{i+1}: A^0(g_{i+1}) \longrightarrow A^0(g_i)$. Put $\pi_i = \rho_1 \cdots \rho_i$. Then $\hat{o}(g_i) = \pi_i o(g_i) \pi_i^{-1}$ is an orthogonal transformation of $A^{0}(h_0)$. Let $\ell = (\ell_0, \ell_1, \ldots, \ell_{n-1}) \in \mathbb{N}^n$, $g^{\ell} = g_0^{\ell_0} g_1^{\ell_1} \cdots g_{n-1}^{\ell_{n-1}}$ and $\hat{\rho} = \hat{o}(g_0)^{\ell_0} \hat{o}(g_1)^{\ell_1} \cdots \hat{o}(g_{n-1})^{\ell_{n-1}}$. Clearly $\hat{o}(g_i)^{\ell_i} = \hat{o}(g_i^{\ell_i})$.

An important role in our proof of the next lemma is played by the main result of the recent paper [PR] by G. Prasad and A. S. Rapinchuk.

LEMMA 2.5: Let Γ be a Zariski dense subgroup in H_B and g and h be hyperbolic *transversal elements of* Γ *. Put* $g_0 = g$ *. There exist a positive real number* ε *and elements* $g_i \in \Gamma$ *, fori* = 1, ..., $n-1$, *such that with* $g_n = h$:

- (1) g_0, g_1, \ldots, g_n are ε -hyperbolic, pairwise ε -transversal elements.
- (2) The set $\{o_\ell\}_{\ell \in \mathbb{N}^n}$ is dense in the connected component of the group $O(B_{q_0})$.

Proof: The group Γ is a Zariski dense subgroup of $O(B)$ and, according to [AMS 3], for every *n* there are hyperbolic elements $g_i, i = 1, \ldots, n-1$, such that g_0, g_1, \ldots, g_n are ε -hyperbolic, pairwise ε -transversal elements, for suitable ε . Let us now explain how to show that (2) is true.

It is enough to show that for every hyperbolic element g there exist hyperbolic, pairwise transversal elements g_1,\ldots,g_n such that the closure of the set $\{o_\ell\}_{\ell\in\mathbb{N}^n}$ contains a Zariski open subset. Assume that we have chosen elements $g_i, i =$ $1,\ldots, n-1$ such that the closure O of the set $\{o_\ell\}_{\ell\in\mathbb{N}^n}$ has maximal possible dimension. The set O is constructible and therefore there exist Zariski closed subsets K_i and Zariski open subsets U_i of $O(B_{g_0})$, $1 \leq i \leq m$ such that $O =$ $\bigcup_{i=1}^{m} (K_i \cap U_i)$. Assume that for every $i, i = 1, \ldots, m, K_i$ is a proper subset of $O(B_{h_0})$. Let

 $S_1 = {\gamma | \gamma \in \Gamma, \gamma \text{ is hyperbolic and } \mathbb{R}$-irreducible element}}.$

This set is nonempty and open in Γ (see [PR]). Let

 $S_2 = \{ \gamma | \gamma \in \Gamma, \gamma \text{ and } g_{n-1} \text{ are transversal} \}.$

This set is also open and nonempty. Therefore, the same is true for $S = S_1 \cap S_2$. Let $\gamma \in S$ and let $\rho: A^{0}(\gamma) \longrightarrow A^{0}(g_{n-1})$ be the projection we defined above. Put $\pi_{n+1} = \pi_n \rho$. Let us now take an element t from H_B and consider the element $\gamma(t) = t\gamma t^{-1}$. Define T_{γ} to be the set of all regular elements $t \in H_B$ such that $A^+(\gamma) = A^+(t)$, $A^-(\gamma) = A^-(t)$ and therefore $A^0(\gamma) = A^0(t)$. It is easy to see that the set

$$
T_1 = \{o(t)o(\gamma)^n o(t^{-1}) | n \in \mathbb{N}, t \in T_\gamma\}
$$

is dense in $O(B_{\gamma})$, because γ is R-irreducible. Therefore, the set

$$
T = \{ t \in H_B | \{ \overline{\partial(\gamma(t))^n} \}_{n \in \mathbb{N}} \subsetneq K \text{ where } K = \bigcup_{i=1}^m K_i \}
$$

is open and nonempty. Let $t \in T \cap S$. Let us take an element $g_n = t \gamma t^{-1}$. If we add g_n to the chosen set g_i , $i = 1, \ldots, n-1$ we increase the dimension of the set $\{o_\ell\}_{\ell \in \mathbb{N}^{n+1}}$, which is impossible. Therefore, $K_i = O(B_{g_0})$ for some *i*. Then the closure of the set $\{o_\ell\}_{\ell \in \mathbb{N}^n}$ contains Zariski open subsets.

Let $\mathfrak{O}(B)$ be the following set:

 $\mathfrak{D}(B) = \{ (W, g) ; W \text{ a maximal } B \text{-anisotropic subspace of } \mathbb{R}^n, \}$

 B_W the restriction of B on W, and $q \in O(B_W)$.

We will say a sequence $\{X_n\}_{n\in\mathbb{N}}$, $X_n = (W_n, g_n) \in \mathfrak{O}(B)$, converges to $X =$ $(W, g), X \in \mathfrak{O}(B)$, if

- (1) $d(W_n, W) \longrightarrow 0$ when $n \longrightarrow \infty$;
- (2) for every $\varepsilon > 0$ there exists $N = N(\varepsilon)$ such that for every pair (a, b) of vectors with $a \in W$, $|a| = 1$, and $b \in W_n$, $|b| = 1$, we have

$$
|a-b| - \varepsilon \le |g(a) - g_n(b)| \le |a-b| + \varepsilon, \text{ for all } n > N.
$$

We will then write $X_n \rightrightarrows X$.

For any hyperbolic element g of $O(B)$, put $X_q = (A^0(q), o(q)) \in \mathfrak{O}(B)$. Let $\mathfrak{D}(\Gamma) = \{X_g | g \in \Gamma, g \text{ hyperbolic} \}$ and $\mathfrak{D}^{\varepsilon}(\Gamma) = \{X_g | g \in \Gamma, g \text{ is hyperbolic} \}.$

LEMMA 2.6: Let Γ be a Zariski dense subgroup in $O(B)$ and let $\mathfrak{D}(\Gamma)$ be the *closure of* $\mathfrak{D}(\Gamma)$ *in* $\mathfrak{D}(B)$ *and* $\mathfrak{D}^{\varepsilon}(\Gamma)$ *be the closure of* $\mathfrak{D}^{\varepsilon}(\Gamma)$ *in* $\mathfrak{D}(B)$ *.*

- (1) *If* $(W, g) \in \overline{\mathfrak{O}(\Gamma)}$ and $W = A^0(\gamma)$ for some hyperbolic element $\gamma \in \Gamma$, then $(W, g) \in \overline{\mathfrak{O}(\Gamma)}$ for every $g \in O(B_W)$.
- (2) If $(W, g) \in \overline{\mathfrak{O}^{\varepsilon}(\Gamma)}$, *then* $(W, g) \in \overline{\mathfrak{O}^{\varepsilon}(\Gamma)}$ for *every* $g \in O(B_W)$.

3. Afflne groups and sketch of the proof

Let A_B be the subgroup of the affine group Aff \mathbb{R}^n consisting of those elements g whose linear part belongs to H_B . Recall that $H_B = SO(B)$, where B is a non-degenerate quadratic form and $O(B)$ is an orthogonal group of the form B. We will call $g \in A_B$ hyperbolic if the linear part $l(g)$ is hyperbolic. Let us remember that for a linear hyperbolic transformation $l(q)$, we have defined three vector spaces $A^+(l(g))$, $A^-(l(g))$, $A^0(l(g))$ determined by the condition that all eigenvalues of the restriction $g | A^+(l(g))$ (resp. $g | A^-(l(g))$, $g | A^0(l(g))$) are of modulus more than 1 (resp. less than 1, equal to 1). For an element $g \in A_B$ we will still write $A^+(g)$ $(A^-(g), A^0(g))$ instead of $A^+(l(g))$ $(A^-(l(g)), A^0(l(g)))$. Let now g be a hyperbolic element of A_B for which there exists a unique q invariant line L_g . That will be the case if, for example, g is a hyperbolic element of Γ and Γ acts properly discontinuous on \mathbb{R}^n . In this case the restriction of g to L_g is a parallel translation by a vector t_g . Note that $t_g \in A^0(g)$, so $B_q(t_q, t_q) > 0$. Let $v^0(g) = t_q/B_q(t_q, t_q)$, and $B_q(v^0(g), v^0(g)) = 1$, so

$$
B(gx-x,v^0(g))=t_g
$$

for any point $x \in \mathbb{R}^n$. Let us now define the following affine subspaces: E_q^+ = $D^+(g) + L_g$, $E_g^- = D^-(g) + L_g$ and $C_g = E_g^+ \cap E_g^-$. It is clear that $L_g \subseteq C_g$.

We will also use the notation π_g for the natural projection $\pi_g \colon \mathbb{R}^n \longrightarrow C_g$ parallel to $A^+(q) \oplus A^-(q)$.

LEMMA 3.1: Let g_0, h_1, \ldots, h_m be ε -hyperbolic, pairwise ε -transversal ele*ments. Let H be the group generated by* h_1, \ldots, h_m and let $g_h = g_0 h$. We will fix *a point* $q \in \mathbb{R}^n$ *and put* $c_{g_h} = d(q, C_{g_h})$ *. Let* $s = \max\{s(g_0), s(h_1), \ldots, s(h_m)\}.$ Then there exist ε , $a = a(\varepsilon)$, $c = c(\varepsilon)$ such that for $s \le a$

- (1) q_h is $\varepsilon/2$ -regular for all $h \in H$,
- (2) $c_{a_h} \leq c$ for all $h \in H$.

Let $\mathfrak{O}_a(B)$ be the set of all (X, v) where $X = (W, g) \in \mathfrak{O}(B)$, $v \in W$ and $B(v, v) = 1$. The set $\mathfrak{O}_a(B)$ contains information about the affine transformation g, not only about its linear part $\ell(g)$, therefore we add the index a to $\mathfrak{O}(B)$. We will say that the sequence $\{(X_n,v_n)\}_{n\in\mathbb{N}},\ (X_n,v_n)\in\mathfrak{O}_a(B)$ converges to $(X, v) \in \mathfrak{O}_a(B)$ if $X_n \rightrightarrows X$ and $v_n \to v$. Let

$$
\mathfrak{O}_{a}^{\varepsilon}(\Gamma) = \{ (X,v) \in \mathfrak{O}_{a}(B); X \in \mathfrak{O}^{\varepsilon}(\Gamma), v \in W, B(v,v) = 1 \}.
$$

The following results play a central role in our proof. We will prove it under the following assumptions about an affine group Γ .

- (I) B is a non-degenerate quadratic form of signature (p, q) , where $p \geq q$, and one of the following two conditions holds: $p - q \ge 2$ or $q \le 2$.
- (II) $\ell(\Gamma)$ is Zariski dense in $O(B)$.
- (III) Every hyperbolic element $\gamma \in \Gamma$ has no fixed point.

Note that we do not assume that Γ is properly discontinuous.

PROPOSITION 3.2: Let Γ be a subgroup of Aff \mathbb{R}^n with the properties (I)-(III) above. Then there exist elements $X_1, \ldots, X_m, Y_1, \ldots, Y_m$ with the following *properties:*

- (1) $X_i \in \overline{\mathfrak{O}^{\varepsilon}(\Gamma)}$ for $i = 1, \ldots, m$ and $Y_i \in \overline{\mathfrak{O}^{\varepsilon}(\Gamma)}$ for $i = 1, \ldots, m$.
- (2) For all $i = 1, ..., m$ we have $X_i = (W, g_i, v_i)$ and $Y_i = (W, h_i, -v_i)$.
- (3) $\{v_1, v_2, \ldots, v_m\}$ forms a basis of W.

Based on Proposition 3.2 we prove

PROPOSITION 3.3: Let Γ be a subgroup of Aff \mathbb{R}^n with the properties (I)-(III) above. Then there is an $\varepsilon > 0$, a set of ε -regular, ε -transversal elements γ_1,\ldots,γ_s in Γ , a compact subset K of \mathbb{R}^n and constants $C_0 = C_0(\varepsilon)$, $C_1 =$ $C_1(\varepsilon)$, $r = r(\varepsilon) > 1$ and $q = q(\varepsilon) < 1$ such that:

- (1) $\gamma_1, \ldots, \gamma_s$ are free generators of a free group $\Gamma^* = \langle \gamma_1, \ldots, \gamma_s \rangle$.
- (2) If γ is an ε -regular element in Γ such that $\{\gamma, \gamma_1, \ldots, \gamma_s\}$ are pairwise ε -transversal elements and $r(\gamma) \geq r$, then $\gamma, \gamma_1, \ldots, \gamma_s$ are free generators *of a free group F.*
- (3) If γ is as in (2) and $d_{\gamma}^{B}(K) > C_0$ and $r(\gamma) \geq r$, then there are a number $t \in \{1, \ldots, s\}$ and a positive integer $m \leq d_{\gamma}^{B}(K) \cdot C_1$ such that for $\hat{\gamma} = \gamma_l^m \cdot \gamma$ we have $d_{\widehat{\alpha}}^B(K) \leq q \cdot d_{\gamma}^B(K)$.

Let us explain the connection between these two important propositions. Assume that there exist hyperbolic, pairwise transversal elements g_1,\ldots,g_m in Γ and h_1, \ldots, h_m in Γ such that if $X_i = (A^0(g_i), o(g_i)), v_i = v^0(g_i), Y_i =$ $(A^0(h_i), o(h_i)), v_i = v^0(h_i)$ satisfy conditions (1)-(3) of Proposition 3.2. Then using Lemma 3.1 one can see that such elements satisfy Proposition 3.3. By Proposition 3.2, we can find such elements $X_1, \ldots, X_s, Y_1, \ldots, Y_s$ in the closure of $\mathfrak{O}_{a}^{\epsilon}(\Gamma)$. The content of Proposition 3.3 is to show that if we take elements from Γ quite close to the elements $X_1,\ldots,X_s, Y_1,\ldots,Y_s$, then they will also satisfy Proposition 3.3.

From these propositions follows

COROLLARY 3.4: *With notations and assumptions as in the proposition, let w be the word length on* $\Gamma^* = \langle \gamma_1, \ldots, \gamma_s \rangle$. *Then there is a constant* $C = C(\varepsilon)$ and an element $\gamma^* \in \Gamma^*$ *such that* $w(\gamma^*) \leq (d^B_\gamma(K) \cdot C)^2$ and $d^B_{\gamma^*,\gamma}(K) \leq C_0$.

The idea of the proof of Theorem 1 is as follows. We decompose every $\gamma \in \Gamma$ into two components, along W_1 and along W_2 . The proposition shows that for the W_1 -component there is a coming-back effect. The corollary shows furthermore that one has control over the word length of the elements involved. It follows that exponentially many elements have the property that their W_1 component returns near the starting point. Considering their W_2 -component, one plays this exponential growth of the number of elements against the polynomial growth of the volume to see that there are infinitely many elements whose W_2 -component returns close to the starting point. Since one has control over the E_{γ}^{0} -spaces, we conclude a contradiction to proper discontinuity.

We will now explain the main lines of the proof in more detail. Assume F is not virtually solvable. Then the Zariski closure G of $\ell(\Gamma)$ is semisimple, and

there is a decomposition $\mathbb{R}^n = W_1 \oplus W_2$ where W_i , $i = 1, 2$, are G-invariant, W_1 is an irreducible G-vector space, $B_1 = B|W_1|$ has signature $(n_1 - 2, 2)$ and $B_2 = B|W_2$ is positive definite. We have a projection π_1 of the affine space \mathbb{R}^n to the affine space $A_1 = \mathbb{R}^n/W_2$ along W_2 , and hence an induced homomorphism $\pi_1: \Gamma \to \text{Aff } A_1$ and similarly for $\pi_2: \mathbb{R}^n \to \mathbb{A}_2 := \mathbb{R}^n/W_1$. As a first step we show that the representation of G on W_1 has property (*) and $\pi_1(\Gamma)$ is Zariski dense in $O(B_1)$. We can thus apply Proposition 3.3 to the group $\Gamma_1 = \pi_1(\Gamma)$ in the following way. We find elements γ_1,\ldots,γ_s in Γ such that the elements $\pi_1(\gamma_1),\ldots,\pi_1(\gamma_s)$ are as in Proposition 3.3. As in [AMS 1, AMS 3] we can then choose two elements $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ in Γ both regular and such that the elements $\pi_1(\widetilde{\gamma}_i), \pi_1(\gamma_i), i = 1, 2, j = 1, \ldots, s$ are pairwise transversal. Let $\varepsilon_1 < \varepsilon$ be chosen so that these elements are ε_1 -regular and pairwise ε_1 -transversal. Then there is a natural number N such that for every $\gamma \in \langle \widetilde{\gamma_1}^N, \widetilde{\gamma_2}^N \rangle$ we have

- (a) $\pi_1(\gamma)$ is $\varepsilon_{1/2}$ -regular and $r(\pi_1(\gamma)) \geq r(\varepsilon_1/2)$,
- (b) $\{\pi_1(\gamma), \pi_1(\gamma_i), i = 1, \ldots, s\}$ are pairwise $\varepsilon_1/2$ -transversal.

By changing notation we will assume that $N = 1$ and put $\varepsilon = \varepsilon_1/2$. Let w be the word metric on $\hat{\Gamma} = \langle \gamma_1, \ldots, \gamma_s, \tilde{\gamma}_1, \tilde{\gamma}_2 \rangle$ corresponding to these generators. It is easy to check that for any two compact subsets $K_1 \subset A_1$ and $K_2 \subset A_2$ we have

- (1) $d_{\pi, (\infty)}^{D_1}(K_1) \ll w(\gamma),$
- (2) $d_{\pi_0(\gamma)}^{B_2}(K_2) \ll w(\gamma).$

Now let $S(M) = \{ \gamma \in \langle \tilde{\gamma}_1, \tilde{\gamma}_2 \rangle; w(\gamma) \leq M \}.$ Then $|S(M)| \geq 3^M - 1.$ For every $\gamma \in S(M)$ there is an element $\gamma^* \in \Gamma^*$ such that

$$
w(\gamma^*) \leq (d_{\pi_1(\gamma)}^{B_1}(K_1) \cdot C)^2
$$
 and $d_{\pi_1(\gamma^*\gamma)}^{B_1}(K_1) \leq C_0$,

by Lemma 3.1 It is not difficult to see that $w(\gamma^*\gamma) \ll M^2$. Therefore, if we put $T(M) = \{ \gamma \in \widehat{\Gamma} ; d_{\pi_1(\gamma)}^{B_1}(K_1) \leq C_0 \text{ and } w(\gamma) \leq C_3 \cdot M^2 \}$ for an appropriately chosen constant C_3 , we have

(3) $|T(M)| \geq 3^M - 1$.

For $p \in A$ and $\gamma \in T(M)$ we can conclude from (1) and (2) that γp is in the ball of radius C_3M^2 around p. The volume of this ball is $\ll M^{2 \cdot \dim A_2}$ whereas *IT(M)* grows exponentially with M. Hence for every $\delta > 0$ the number of elements of $P(M) = \{(\gamma_1, \gamma_2) \in T(M) \times T(M), B_2(\pi_2 \gamma_1(p) - \pi_2 \gamma_2(p)) \le \delta\}$ goes to infinity when $|M|$ goes to infinity. Since, for an appropriately chosen point $p \in \mathbb{R}^n$, the Euclidean distance $d(\gamma(p), p)$ is bounded for $\gamma = \gamma_1 \gamma_2^{-1}$ and $(\gamma_1, \gamma_2) \in P(M)$, it follows that Γ does not act properly discontinuously. This proves the theorem.

References

- $[A]$ H. Abels, *Properly discontinuous groups of aftlne transformations. A survey,* Geometriae Dedicata 87 (2001), 309-333.
- [AMS 1] H. Abels, G. A. Margulis and G. A. Soifer, *Semigroups containing proximal linear maps,* Israel Journal of Mathematics 91 (1995), 1-30.
- $[AMS 2]$ H. Abels, G. A. Margulis and G. A. Soifer, *Properly discontinuous groups of* affine *transformations with orthogonal linear part,* Comptes Rendus de l'Académie des Sciences, Paris 324 I (1997), 253-258.
- [AMS 3] H. Abels, G. A. Margulis and G. A. Soifer, *On the Zariski closure of the linear part of a properly discontinuous group of aftine transformations,* Journal of Differential Geometry 60 (2002), 314-335.
- **[FG]** D. Fried and W. Goldman, *Three-dimensional affine crystallographic groups*, Advances in Mathematics 471 (1983), 1-49.
- **[GK]** W. Goldman and Y. Kamishima, The *fundamental* group *of a compact flat Lorentz* space form is *virtually polycydic,* Journal of Differential Geometry 19 (1984), 233-240.
- [GrM] F. Grunewald and G. A. Margulis, *Transitive and quasitransitive* actions *of a~ne groups preserving a generalized Lorentz-structure,* Journal of Geometry and Physics 5 (1989), 493-531.
- [OV] A. L. Onishchik and E. B. Vinberg, *Lie Groups and Algebraic Groups,* Translated from the Russian and with a preface by D. A. Leites, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990.
- **[PR]** G. Prasad and A. S. Rapinchuk, *Existence of irreducible R-regular elements in Zariski-dense subgroups,* Mathematical Research Letters 10 (2003), 21-32.